
Search Time in Unstructured Peer-to-Peer Networks
With Clustered Demands

Saurabh Tewari, Leonard Kleinrock
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90095, U.S.A.

{stewari,lk}@cs.ucla.edu

Abstract— Search time as a function of the number of replicas of
a queried object provides a key component to understanding
system behavior in peer-to-peer networks. The analytical work in
this area so far has assumed a uniform distribution of file replicas
throughout the network with an implicit or explicit assumption of
uniform file popularity distribution whereas, in reality, there is
clear evidence of clustering in file popularity patterns. In this
paper, we provide mechanisms for modeling clustering in file
popularity distributions and the consequent non-uniform
distribution of file replicas. We provide results for the search
time in such networks for both random walk and flooding search
mechanisms.

Keywords- Flooding, Peer-to-Peer Networks, Random Walk,
Search Time

I. INTRODUCTION
Peer-to-peer networks offer the promise of systems that

automatically scale in capacity as the number of users increases
and yet are extremely robust, automatically adapting to failures
of nodes/links as well as to changes in usage patterns, all at
virtually no cost. These loosely organized networks of
autonomous entities (user nodes or “peers”), which make their
resources available to other peers, represent a new computing
paradigm where the service consumers are, now, the service
providers as well. So, for example in peer-to-peer file sharing
networks, users share files and if one wants to download a file
and another user is sharing that file, one would download it
directly from that user. Upon obtaining the desired file, one
may also begin to share that file allowing other users to
download from them. Thus, a file is likely to have multiple
replicas in the network with the more popular files having more
replicas (i.e. more sources to download the file from). The
replication of files provides the robustness while its correlation
with popularity provides the automatic scaling according to
usage patterns.

This flexibility, however, comes at a cost: one has to find a
peer who is sharing the desired file. For a user of a peer-to-peer
content distribution system, the measure of system
performance is the time it takes to fulfill a request for a
particular file which now consists of two components: the time
it takes to find who has that content, and the time to actually
download the content. The download component of the
performance, especially as related to the number of replicas of

each file, has been well addressed in [15]. In this paper, we
address the average search time, i.e., the average time it takes
to find a peer that is sharing the desired file, and explore the
relation between the search time for a file and the number of
replicas of that file (henceforth in this paper, when we say
“search time” we mean “average search time”).

Some work has been done in this area assuming a uniform
distribution of file replicas. These results are discussed in the
next section. Measurements on the deployed peer-to-peer file
sharing networks [8] show that there is significant amount of
clustering in interests, i.e., the popularity of a set of files in
(geographical) regions differs from region to region. Further,
most replicas of a file are found in the region where that file is
popular. Our first contribution in this paper is a model of peer-
to-peer networks that allows for incorporating varying degrees
of clustering while retaining a fair amount of analytical
tractability. This model is discussed in Section 3. Our second
contribution, given in Sections 4 and 5, is the search time with
random walk search and with flooding search in peer-to-peer
networks with clustering.

II. BACKGROUND AND RELATED WORK
As discussed, the time to find which peer has the desired

file is a key performance metric. Hence, the search mechanism
to find the desired file in the network has received a lot of
attention. One approach is to have a centralized index of the
files each peer is sharing where one could just look up which
peer has the desired file. However, this introduces a single
point of failure and congestion in the system. Another approach
is to treat each peer as providing a certain amount of storage to
the system and have a one-to-one mapping of the object to be
stored in the system and nodes in the system. In this class of
networks, called structured networks, the nodeId where the
desired object is stored (if it was in the network) can be
computed so one does not need to “search” for files (finding
the node associated with that nodeId still incurs a delay) [10,
13]. Most of the deployed peer-to-peer applications, however,
use yet another approach where the nodes have control over the
files they share and to obtain the desired file, a peer must query
other nodes to find a node that is sharing the desired file1. It is

1 To make the search more efficient, a common variation is to have a

“superpeer” keep a list of files shared by 50-100 other “peers”.

these unstructured peer-to-peer networks that we focus on in
this paper.

Since a node cannot realistically keep the addresses of all
other peers, each node keeps addresses of a few other peers
(called its neighbors) through which it reaches the rest of the
nodes. That is, an overlay network is constructed to accomplish
search tasks. The topology of this search network depends on
the peer-to-peer protocol and the typical model used for these
networks is the Erdos-Renyi random graph [2] (a power-law
random graph is another choice but it distributes the query-
processing load unevenly among the peers while yielding faster
search methods [4, 12]). The Erdos-Renyi random graph is a
good choice when nodes are similar in capacities and file
interests (i.e. when files and file popularities are uniformly
distributed). We choose this model for our work herein.

A second major design choice is in how the search is
conducted over this search network when no information is
available about which nodes may have the file. The two main
approaches are flooding and random walking. In flooding, the
node that wants the file sends a query to all its neighbors and
they, in turn, forward the query to all their neighbors (except
the one which sent the query) until a copy of the file is found.
In random walking, the query is sent to one randomly selected
neighbor and if that neighbor does not have the file, it forwards
the query to one of its neighbors (selected randomly) other than
the neighbor that sent it the query. Thus, the number of nodes
queried with each additional hop grows exponentially in
flooding leading to lower search time than random walk where
this growth is linear [14].

The two main works on search times are [5, 14]. Both
approximate the search time for a file in the network by the
average number of hops it takes for a query to reach a node that
has the file and we will also use the same approximation for the
search time in this paper.

Reference [5] gives the search time for a file as a function
of number of replicas of the file when the search method is a
random walk. Say there are ni copies of file i in the network
and a total of M nodes in the network. If these ni copies are
uniformly distributed in the network (at most one copy to a
node), a randomly selected node has a probability ni/M of
having the file. Thus, random walking for file i is a sequence of
Bernoulli trials with ni/M as the probability of success. Hence
the (average) search time for file i with random walk τiR is:

 τiR(ni) = M/ni (1)

Reference [14] provides analogous results for flooding and
then goes on to compare flooding and random walking and
shows the benefits controlled flooding provides over random
walking. It gives the flooding search time under the uniform
distribution assumption to be:

 τiF(ni) = logd(M/ni) (2)

where τiF is the (average) search time for file i with flooding, d
is the average degree (i.e. the average number of neighbors of
each node) of the search network with ni and M as defined
earlier. Intuitively one can interpret this result as follows. A

search for file i needs to query M/ni nodes on average to find
the file. Since a random walk queries one additional node per
hop, it takes M/ni rounds to find the file while flooding can
query that many nodes in just logd(M/ni) hops because it
queries exponentially more nodes with each additional hop2.

There is considerable work on peer-to-peer networks but
due to space constraints we will only mention some of the
search-related work here. Reference [1] gives analytical results
on search time but when there is only one copy of each object.
Flooding search is also analyzed by [17] but they focus on node
reachability in hop-limited flooding. Simulation results in [11]
also show the logarithmic relationship between search time and
number of replicas (as we show in [14]). Our work in this paper
gives analytical support to the proposal in [3] of constructing
networks with clustering to improve the search process. Our
analysis complements work in [9] which uses replication
(query result caching) to improve search (the metric is query hit
rate in hop-limited flooding search). Random walk search has
been studied by many others (e.g. [4], [7], [12]) but the
network model and/or the metrics of interest were different.

III. NETWORK MODEL
As discussed above, we already have the search time

expressions for both random walk and flooding searches if the
file distribution is uniform. Our task in this paper is to
investigate the effect clustering has on search times. As
mentioned, measurements on real systems indicate that most
replicas of a file are located in the regions where the file is
more popular. Therefore, intuitively one would expect that
average search times should be shorter in the presence of
clustering (there are more replicas nearby in regions where
most requests for that file are made).

Let us assume that our peer-to-peer network has M nodes
and that these M nodes are clustered in, say, L clusters. For
ease of discussion, we make the following assumptions. Each
cluster is of the same size (thus, each cluster has M/L nodes).
There are only two levels of popularity of each file and there is
only one cluster where a file is more popular. We assume that
the cluster where a file is more popular will have more copies
of that file i.e. if the ni copies of file i are split as nia in the
cluster where the file is popular and nib in each of the remaining
clusters, where ni=nia+(L-1)nib, nia<M/L and nia> nib. One may
then say that the cluster where file i is more popular has a
higher density of file i whereas a cluster where the file is not as
popular has a lower density. Since clustering has already been
accounted for, we assume that within each cluster the files are
uniformly distributed over all the nodes in the cluster.

One possible model for the search network is to assume that
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the
Erdos-Renyi random graph topology. For this model of

2 Since a node does not forward a query twice, the exponential growth

assumption is optimistic. Thus, (2) slightly underestimates the actual search
time. In [16], we provide simulation plots for the average search distance for
different topologies as well as an analytical proof for (2) when M→∞ and ni/M
is small. Our work in [16] indicates that (2) is an approximate expression for
the search time which captures the dependence of search time on the number
of replicas very well while underestimating the search time by a small amount.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500

Number of Copies in the Cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e
Simulation

Analytical

Figure 1. Search Time with Perfect Clustering (25,000 node network, 5

equal-sized clusters, Average Degree 5)

clustering, the search time expressions can be obtained from
our earlier results [14] for the uniform file distribution case.
Specifically, the search time for flooding when a node in the
high density cluster initiates the search, τiFa, is:

 τiFa(nia, nib) = logd(M/niaL) (3)

while the search time for flooding when a node in the low
density cluster initiates the search, τiFb, is:

 τiFb(nia, nib) = logd(M/nibL) (4)

Similarly, the search time for a random walk when a node
in the high density cluster initiates the search, τiRa, is:

 τiRa(nia, nib) = M/(niaL) (5)

whereas the search time for a random walk when a node in the
low density cluster initiates the search, τiRb, is:

 τiRb(nia, nib) = M/(nibL) (6)

Comparing (3)-(6) to (1), (2) we see that perfect clustering
reduces the random walk search time (and the query-processing
load for both flooding and random walk [14]) by a factor of L
while the flooding search time decreases by logdL. Fig. 1,
where we compare simulation results with (3), shows that (3)
captures the effect of the number of replicas very well (since
(3) is based on (2), the slight underestimation by (3) is
expected).

While assuming disconnected clusters makes for an easy
first-order analysis, actual peer-to-peer networks do not have
such fully disconnected clusters. There is evidence of strong
clustering but intercluster links do exist in real networks so
neither an Erdos-Renyi random graph over the entire network
nor the fully disconnected clusters model is an appropriate
topology. Therefore we must define a new kind of topology
that is an intermediate between these two extremes. Ideally, we
would like to define a continuum of topologies with the Erdos-
Renyi random graph at one extreme and the fully disconnected
clusters at the other extreme. One such topology is the
following random graph variant. Consider a network in which
the probability of including an intra-cluster link is p and the
probability of including an inter-cluster link is q and the

TABLE I. NOTATIONS USED

M Number of nodes

L Number of clusters

d Average degree of the search overlay topology

q Probability of any given pair of inter-cluster nodes having a
direct link

ni Number of replicas of file i in the entire network

nia Number of replicas of file i in the “high-density” cluster

nib Number of replicas of file i in the “low-density” cluster

τiR Average search time for file i with random walk search

τiF Average search time for file i with flooding search

τiRa
Average search time for file i from high-density cluster
with random walk search

τiRb
Average search time for file i from low-density cluster with
random walk search

τiFa
Average search time for file i from high-density cluster
with flooding search

τiFb
Average search time for file i from low-density cluster with
flooding search

average per-node degree is d as before i.e. assuming L clusters
of equal sizes, the nodes are partitioned into L clusters and the
probability that any given pair of intra-cluster nodes is
connected is p and the probability that any given pair of inter-
cluster nodes are connected is q. Thus, each node has an
average of (M/L)p links to nodes within its cluster and (M-
M/L)q links to nodes outside its cluster. Hence, the average
degree d = (M−M/L)q + (M/L)p and if one were to hold the
average degree constant, defining one of p or q defines the
other. Notice that this topology does provide the desired
continuum of topologies from the completely disjoint clusters
(with q=0) at one extreme and the random graph (p=q) at the
other. A side benefit for flooding search is that it does not
matter whether a search process is at a node in the higher-
density cluster or the lower-density cluster, it will expand to d
other nodes in higher or lower-density clusters in the next hop.
Thus, the average number of nodes queried per search expands
exponentially and the dτ expression for number of nodes
queried given the average search distance of τ [14] still holds.

We summarize the notation used in this paper in Table 1.

IV. RANDOM WALK SEARCH IN NETWORKS WITH
CLUSTERING

In the case of no clustering and the case of disconnected
clusters we discussed so far, a search only queried nodes of the
“same type” (i.e. all the nodes queried by the search had the
same probability of having the desired file). However, this is
not the case in the clustered peer-to-peer network as the
existence of inter-cluster links implies that a query can get
forwarded to a node in a different cluster where the probability
of a node having the file may be different. Thus, in our model,
when a query is forwarded, the event of interest is whether it
goes to a node in the high-density cluster or to a node in one of
the low-density clusters. Among the d outgoing links at each
node, the probability that a link is an inter-cluster link is q(M-
M/L)/d. Therefore, for a query at a node in the higher-density
cluster, the probability of one query path “escaping” to a lower-

G
P(find)=a

e

1−c

c

1−eB
P(find)=b

NG

e(1-a)

c(1-b)

(1−e)(1-b)NB(1−c)(1-a)

F
(1−c)a+cb (1−e)b+ea

(a)

(b)

1

Figure 2. Random walk in the modified random graph for the non-uniform
file distribution case

density cluster is c = q(M-M/L)/d. In contrast, when the query
is at a node in the lower-density cluster, the probability of
escaping to the higher density cluster is e = q(M/L)/d as there
are only M/L nodes that are of interest for this event. For ease
of discussion, throughout the rest of the paper, we refer to the
nodes within the higher-density cluster as “good” nodes, and
the nodes in the lower-density clusters as “bad” nodes.

Fig. 2a shows a Markov chain model for the random walk
on our modified random graph with a non-uniform file
distribution prior to finding the file: state G represents the
random walk being at a “good” node and state B represents the
random walk being at a “bad” node. The random walk
transitions between state G and state B until it finds the file.
The probability of finding the file when the system transitions
to state G (i.e. at a good node) is a = niaL/M, and the
probability of finding the file when the system transitions to
state B (i.e. at a bad node) is b = nibL /M. Since we need to
determine the average number of steps until the file is found for
the random walk search time, we transform our Markov chain
in Fig. 2a to that in Fig. 2b. The state NG denotes the event that
the search visits a good node but does not find the file and the
state NB denotes the event that the search visits a bad node but
does not find the file. State F is an absorbing state denoting the
event that the file is found independent of whether the previous
node is good or bad. Thus, the average first passage time from
state NG to state F is the search time for a random walk search
initiated by a good node, τiRa, and the average first passage time
from state NB to state F is the search time for a random walk
search initiated by a bad node, τiRa.

The relevant equations [6], therefore, are:

 τiRa = 1+ (1-c)(1-a)τiRa + c(1-b)τiRb

 τiRb = 1+ e(1-a)τiRa + (1-e)(1-b)τiRb

Therefore:

τiRa =
()(1)

(1) (1)
c e b b

ab cb a ae b
+ − +

+ − + −
= 1]

)()1(
)([−

++−−
−−

ececb
baca

 τiRb=
()(1)

(1) (1)
c e a a

ab cb a ae b
+ − +

+ − + −
= 1]

)()1(
)([−

++−−
−+

ececa
baeb

Substituting the values for a, b, c and e, we get the
following theorem:

Theorem 1. The (average) search time for a random walk
search in the clustered peer-to-peer network defined in Section
3 is:

 τiRa (nia, nib) = 1]
))(/(

))(1(
[−

+−
−−

−
MqMqdMLn

nnLq
M

Ln

ib

ibiaia (7)

if the search is initiated at a node in the high-density cluster,
and is:

 τiRb(nia, nib) = 1]
)(/(
)(

[−

+−
−

+
MqMqdMLn

nnq
M

Ln

ia

ibiaib (8)

if the search is initiated at a node in the low-density cluster. g

Comparing (7), (8) with (5), (6) respectively, we see that
the search time for a query initiated by a good node increases if
cross-cluster links are present but if a bad node initiated the
query, the search time decreases. As expected, if there were no
cross-cluster links (i.e. q=0), (7), (8) revert to (5), (6)
respectively. Further, in the uniform distribution case, nia = nib
= ni/L and (7) and (8) revert to (2) as expected.

V. FLOODING SEARCH IN NETWORKS WITH CLUSTERING
Unlike the case of no clustering where we found in Section

2 that the flooding search time is the logarithm of the random
walk search time, in networks with clustering the mapping
between flooding and random walk is not straightforward.
Clustering implies more intra-cluster links than inter-cluster
links. Therefore, if a query gets to a good node, it is more likely
to have come from a good node than a bad node i.e. P(G|G) >
P(G|B) or 1-c > e. Similarly, a query getting to a bad node is
more likely to have come from a bad node than from a good
node i.e. P(B|B) > P(B|G) or 1-e > c. Thus, searching from a
good node, flooding is likely to see more good nodes than a
random walk upon querying the same number of nodes3, and
searching from a bad node, flooding is likely to see more bad
nodes than a random walk upon querying the same number of
nodes4. Thus, a flooding search initiated by a good node is

3 For example, say, the average degree is 3 and let us compare the average

number of good nodes among the next 3 nodes queried by a good node. The
average number of good nodes with flooding, nF = 3(1−c)3 + 2[3(1−c)2c] +
[3c2(1−c)]. The average number of good nodes with random walk, nR =
3(1−c)3 + 2[2ce(1−c)+c(1−c)2] + [(1−c)c(1−e)+c(1−e)e+c2e]. Thus, nF − nR =
4[(1−c)2c− ce(1−c)] + [3c2(1−c)− (1-c)c(1−e)− c(1−e)e−c2e] = c(c2–
4c+3+2ce–4e+e2) = c[(1−c)2+2(1-c)(1−e)+(1-e)2−1]=c[(2–c–e)2–1]=c(1–c–
e)(3–c–e) > 0 since 1−c > e.

4 Using the example of average degree 3 again, we compare the average
number of bad nodes among the next 3 nodes queried by a bad node. The
average number of bad nodes with flooding, nF = 3(1−e)3 + 2[3(1−e)2e] +
[3e2(1−e)]. The average number of bad nodes with random walk, nR =
3(1−e)3 + 2[2ce(1−e)+e(1−e)2] + [(1−c)e(1−e)+c(1−c)e+e2c]. Thus, nF − nR =
e(1–c–e)(3–c–e) > 0 since 1−e > c.

likely to query more good nodes in logdN steps than a random
walk search would in N steps starting at the same node. Hence,

 τiFa(nia, nib) < logd[τiRa(nia, nib)] (9)

Similarly, a flooding search initiated by a bad node will query
more bad nodes in logdN steps than a random walk search will
in N steps starting at the same node and hence

 τiFb(nia, nib) > logd[τiRb(nia, nib)] (10)

Thus, in networks with clustering, the random walk search
times only provide us with bounds5 on one side for the flooding
search times. These bounds, however, are useful since getting
an exact expression for the average search time is very
difficult. The best we can do is to bound the search time on the
other side as well.

Let us first attempt to obtain a lower bound on the flooding
search time for a search initiated at a good node. The difficulty
in getting an exact expression is that at hop distance > 1, the
query could be at bad nodes as well as good nodes and
computing the relative distribution of these nodes is hard. Since
we want a lower bound, a crude approach is to ignore all the
“bad” possibilities and assume that even after hop distance > 1,
the nodes that are forwarding the queries are all good nodes.
With this assumption, at any hop distance ≥ 1, when a node
queries one of its neighbors, the probability that the file is
found is P(F|NG). Hence, the search time for a flooding search
from a good node is no better than −logd[P(F|NG)] =
logd[(1−c)a+cb] = −logd[a–c(a-b)]. Thus6,

 τiFa(nia, nib) > − (1)()log []ia ia ib
d

n L q L n n
M d

− −− (11)

We can use the same approach to find an upper bound for
τiFb, the search time for a flooding search initiated at a bad
node. We can ignore all the “good” possibilities and assume
that even after hop distance > 1, the nodes forwarding the
queries are all bad nodes. With this assumption, at any hop
distance ≥ 0, when a node queries one of its neighbors, the
probability that the file is found is P(F|NB). Hence, the search
time for a flooding search from a bad node is no worse than
−logd[P(F|NB)] = −logd[(1−e)b+ea] = −logd[b+e(a-b)]. Thus,

 τiFb(nia, nib) < − ()log []ib ia ib
d

n L q n n
M d

−+ (12)

Combining (9, 10, 11, 12), we get the following theorem:

5 The bounds presented in this section are approximate bounds as the
underlying analytical approach (Section 2) underestimates the search time by
a small amount (see Fig. 1). Thus, the actual search times should lie within the
given bounds plus a small offset.

6 Since the probability of finding the file at hop distance 0 is P(F) whereas
the expression −logd[P(F|NG)] assumes P(F|NG) to be the probability at all
hop distances including 0 [16], a correction factor of −[1−P(F)]/[1−P(F|NG)]
is required. Since this correction factor is negligible when the probability that
the querying node itself has the file is small, we omit this from (11). A similar
correction factor applies in the case of a flooding search from a “bad” node
but its magnitude is even smaller and hence we omit it from (12) as well.

Theorem 2. The search time for a flooding search in the
clustered peer-to-peer network defined in Section 3 is
approximately5,6 bounded by

 − (1)()log []ia ia ib
d

n L q L n n
M d

− −− < τiFa(nia, nib)

 < −logd
(1)()[]

(/)()
ia ia ib

ib

n L q L n n
M n L M d Mq Mq

− −−
− +

 (13)

if the search is initiated at a node in the high-density cluster,
and is approximately5,6 bounded by

 −logd
()[]

(/)()
ib ia ib

ia

n L q n n
M n L M d Mq Mq

−+
− +

 < τiFb(nia, nib)

 < − ()log []ib ia ib
d

n L q n n
M d

−+ (14)

if the search is initiated at a node in the low-density cluster. g

Comparing (13), (14) to (3), (4) respectively, we see that
the presence of cross-cluster links increases the search time for
a query initiated by a good node and decreases the average
search time for a query initiated by a bad node. Since the lower
and upper bounds differ only in the denominator of the term
incorporating the effect of clustering, the bounds will be tight
unless (1-x)(d-Mq) is large where x=nibL/M for (13) and
x=niaL/M for (14) or, in other words, when nib or nia are very
small or q is small (in which case (11), (12) provide a good
approximation). We also see that the bounds become equal in 3
cases: when q=0, when nia= nib, and when d−Mq=0. q=0
implies the clusters are disjoint so we revert to (3) and (4) as
expected. The other two cases have important implications.
When, nia= nib = ni/L (i.e. the file distribution is uniform) both
bounds again become equal to (1). However, (1) was under the
assumption of an Erdos-Renyi random graph search network
whereas our network can have an arbitrary degree of clustering.
In the d=Mq case also, the bounds become equal and we revert
to (1) even though our file distribution has clustering but the
search network is an Erdos-Renyi graph as assumed for (1).

In Fig. 3 we compare the bounds in (13), (14) to simulation
results under varying degrees of clustering in inter-cluster link
probability and the ratio of replica density in the high-density
cluster to that in the low-density cluster. As expected we find
that the bounds are tight under moderate clustering (Fig. 3a)
and as clustering becomes stronger (Fig. 3b,c) the bounds start
to separate but the search time gets closer to (11), (12). Thus, in
either case we have a good estimation of the average search
time. Finally, we also note that the search time slightly exceeds
the approximate upper bound is as expected5.

VI. CONCLUSION
In this paper, we investigated the relationship between the

number of replicas of a file in unstructured peer-to-peer
networks and the search time for that file and substantially
expanded the existing knowledge on this topic. We provided a
model to incorporate clustering in peer-to-peer network models
so they better reflect real networks. We were able to find an

(a) 70% links intra-cluster, Replicas-in-low density
 cluster = 0.1*Replicas-in-high-density-cluster

(b) 70% links intra-cluster, Replicas-in-low density
 cluster = 0.01*Replicas-in-high-density-cluster

(c) 90% links intra-cluster, Replicas-in-low density
 cluster = 0.01*Replicas-in-high-density-cluster

Figure 3. Flooding Search Time Simulation vs. Bounds (25,000 node network, 5 equal-sized clusters, Average Degree 5, Varying Degree of Clustering)

exact expression for the random walk search time in a peer-to-
peer network with clustering. We were also able to find bounds
on the flooding search time in these networks. Using these
bounds, we extend the previously known results for flooding
search time which assumed a uniform file distribution and an
Erdos-Renyi random graph to when the file distribution is not
uniform but the search network is an Erdos-Renyi random
graph, and when the file distribution is uniform but the search
network has clustering. Even though there is still room for
improvement in our results, they provide the peer-to-peer
system designers a valuable set of tools to make informed
design choices on questions such as how many replicas they
would like to have for a file, or the TTL hop limit to set for
TTL-scoped flooding searches.

REFERENCES
[1] Baryshnikov, Y., Coffman, E., Jelenkovic, P., Momcilovic, P.,

Rubenstein, D., "Flood Search Under the California Split Rule,"
Operations Research Letters, Vol. 32, No. 3, May 2004.

[2] Bollobas. B, Random Graphs, Academic Press, London, 1985.
[3] Cholvi, V., Felber, P.A., Biersack, E.W., "Efficient Search in

Unstructured Peer-to-Peer Networks," European Transactions on
Telecommunications, Vol. 15, Issue 6, November-December 2004.

[4] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N. and Shenker, S.
"Making Gnutella-like P2P Systems Scalable," in Proc. of ACM
SIGCOMM, August 2003.

[5] Cohen, E. and Shenker, S., "Replication Strategies in Unstructured Peer-
to-Peer Networks," in Proc. of ACM SIGCOMM, August 2002.

[6] Feller, W., An Introduction to Probability Theory and Its Applications,
Vol. 1, John Wiley & Sons, Inc., New York, 1950.

[7] Gkantsidis, C., Mihail, M., Saberi, A., "Random Walks in Peer-to-Peer
Networks," in Proc. of ACM INFOCOM, March 2004.

[8] Le Fessant, F., Handurukande, S., Kermarrec, A. M., Massouli, L.,
"Clustering in Peer-to-Peer File Sharing Workloads," in Proc. of IPTPS,
February 2004.

[9] Lindemann, C., Waldhorst, O.P., "A Distributed Search Service for Peer-
to-Peer File Sharing in Mobile Applications," in Proc. of IEEE Peer-to-
Peer Computing, September 2002.

[10] Rowstron, A. I. T., Druschel, P., "Pastry: Scalable, Decentralized Object
Location, And Routing For Large-Scale Peer-To-Peer Systems," in Proc.
of IFIP/ACM Middleware, November 2001.

[11] Rubenstein, D., Sahu, S., "Can Unstructured P2P Protocols Survive
Flash Crowds?," IEEE/ACM Trans. on Networking, April 2005.

[12] Sarshar, N., Oscar Boykin, P., Roychowdhury, V. P., "Percolation
Search in Power Law Networks: Making Unstructured Peer-To-Peer
Networks Scalable," in Proc. of IEEE Peer-to-Peer Computing,
September 2003.

[13] Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.,
"Chord: A Scalable Peer-To-Peer Lookup Service For Internet
Applications," in Proc. of ACM SIGCOMM, August 2001.

[14] Tewari, S., Kleinrock, L. "Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks," in Proc. of ACM SIGMETRICS,
June 2005.

[15] Tewari, S., Kleinrock, L. "On Fairness, Optimal Download Performance
and Proportional Replication in Peer-to-Peer Networks," in Proc. of IFIP
Networking, May 2005.

[16] Tewari, S., Kleinrock, L. "Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks," UCLA Computer Science Dept
Technical Report UCLA-CSD-TR050006, March 2005.

[17] Zhang, X., Song, G., Zhang, Q., Zhu, W., "Performance Analysis in
Unstructured Overlays," in Proc. of IEEE ICC, May 2003.

b-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e

Lower Bound
Upper Bound
Simulation

b-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500
Number of replicas in high-density cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e
Lower Bound
Upper Bound
Simulation

a-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e

Lower Bound
Upper Bound
Simulation

a-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e

Lower Bound
Upper Bound
Simulation

c-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500
Number of replicas in good cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e

Lower Bound
Upper Bound
Simulation

c-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

Av
er

ag
e

H
op

 D
is

ta
nc

e

Lower Bound
Upper Bound
Simulation

